Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Constructible Graphs and Pursuit (2203.05487v1)

Published 10 Mar 2022 in math.CO and cs.DM

Abstract: A (finite or infinite) graph is called constructible if it may be obtained recursively from the one-point graph by repeatedly adding dominated vertices. In the finite case, the constructible graphs are precisely the cop-win graphs, but for infinite graphs the situation is not well understood. One of our aims in this paper is to give a graph that is cop-win but not constructible. This is the first known such example. We also show that every countable ordinal arises as the rank of some constructible graph, answering a question of Evron, Solomon and Stahl. In addition, we give a finite constructible graph for which there is no construction order whose associated domination map is a homomorphism, answering a question of Chastand, Laviolette and Polat. Lehner showed that every constructible graph is a weak cop win (meaning that the cop can eventually force the robber out of any finite set). Our other main aim is to investigate how this notion relates to the notion of `locally constructible' (every finite graph is contained in a finite constructible subgraph). We show that, under mild extra conditions, every locally constructible graph is a weak cop win. But we also give an example to show that, in general, a locally constructible graph need not be a weak cop win. Surprisingly, this graph may even be chosen to be locally finite. We also give some open problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.