Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

An entropic generalization of Caffarelli's contraction theorem via covariance inequalities (2203.04954v1)

Published 9 Mar 2022 in math.PR, math.FA, math.ST, and stat.TH

Abstract: The optimal transport map between the standard Gaussian measure and an $\alpha$-strongly log-concave probability measure is $\alpha{-1/2}$-Lipschitz, as first observed in a celebrated theorem of Caffarelli. In this paper, we apply two classical covariance inequalities (the Brascamp-Lieb and Cram\'er-Rao inequalities) to prove a sharp bound on the Lipschitz constant of the map that arises from entropically regularized optimal transport. In the limit as the regularization tends to zero, we obtain an elegant and short proof of Caffarelli's original result. We also extend Caffarelli's theorem to the setting in which the Hessians of the log-densities of the measures are bounded by arbitrary positive definite commuting matrices.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube