Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Optimal transport maps, majorization, and log-subharmonic measures (2411.12109v2)

Published 18 Nov 2024 in math.AP and math.PR

Abstract: Caffarelli's contraction theorem bounds the derivative of the optimal transport map between a log-convex measure and a strongly log-concave measure. We show that an analogous phenomenon holds on the level of the trace: The trace of the derivative of the optimal transport map between a log-subharmonic measure and a strongly log-concave measure is bounded. We show that this trace bound has a number of consequences pertaining to volume-contracting transport maps, majorization and its monotonicity along Wasserstein geodesics, growth estimates of log-subharmonic functions, the Wehrl conjecture for Glauber states, and two-dimensional Coulomb gases. We also discuss volume-contraction properties for the Kim-Milman transport map

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.