Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient and feasible inference for high-dimensional normal copula regression models (2203.04619v1)

Published 9 Mar 2022 in stat.ME

Abstract: The composite likelihood (CL) is amongst the computational methods used for the estimation of high-dimensional multivariate normal (MVN) copula models with discrete responses. Its computational advantage, as a surrogate likelihood method, is that is based on the independence likelihood for the univariate regression and non-regression parameters and pairwise likelihood for the correlation parameters, but the efficiency of estimating the univariate regression and non-regression parameters can be low. For a high-dimensional discrete response, we propose weighted versions of the composite likelihood estimating equations and an iterative approach to determine good weight matrices. The general methodology is applied to the MVN copula with univariate ordinal regressions as the marginals. Efficiency calculations show that our method is nearly as efficient as the maximum likelihood for fully specified MVN copula models. Illustrations include simulations and real data applications regarding longitudinal (low-dimensional) and time (high-dimensional) series ordinal response data with covariates and it is shown that there is a substantial gain in efficiency via the weighted CL method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.