Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Generalization using Pretrained Models without Fine-tuning (2203.04600v1)

Published 9 Mar 2022 in cs.CV and cs.AI

Abstract: Fine-tuning pretrained models is a common practice in domain generalization (DG) tasks. However, fine-tuning is usually computationally expensive due to the ever-growing size of pretrained models. More importantly, it may cause over-fitting on source domain and compromise their generalization ability as shown in recent works. Generally, pretrained models possess some level of generalization ability and can achieve decent performance regarding specific domains and samples. However, the generalization performance of pretrained models could vary significantly over different test domains even samples, which raises challenges for us to best leverage pretrained models in DG tasks. In this paper, we propose a novel domain generalization paradigm to better leverage various pretrained models, named specialized ensemble learning for domain generalization (SEDGE). It first trains a linear label space adapter upon fixed pretrained models, which transforms the outputs of the pretrained model to the label space of the target domain. Then, an ensemble network aware of model specialty is proposed to dynamically dispatch proper pretrained models to predict each test sample. Experimental studies on several benchmarks show that SEDGE achieves significant performance improvements comparing to strong baselines including state-of-the-art method in DG tasks and reduces the trainable parameters by ~99% and the training time by ~99.5%.

Citations (34)

Summary

We haven't generated a summary for this paper yet.