Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Domain Generalization via Online Disagreement Minimization (2208.01996v2)

Published 3 Aug 2022 in cs.CV and cs.LG

Abstract: Deep neural networks suffer from significant performance deterioration when there exists distribution shift between deployment and training. Domain Generalization (DG) aims to safely transfer a model to unseen target domains by only relying on a set of source domains. Although various DG approaches have been proposed, a recent study named DomainBed, reveals that most of them do not beat the simple Empirical Risk Minimization (ERM). To this end, we propose a general framework that is orthogonal to existing DG algorithms and could improve their performance consistently. Unlike previous DG works that stake on a static source model to be hopefully a universal one, our proposed AdaODM adaptively modifies the source model at test time for different target domains. Specifically, we create multiple domain-specific classifiers upon a shared domain-generic feature extractor. The feature extractor and classifiers are trained in an adversarial way, where the feature extractor embeds the input samples into a domain-invariant space, and the multiple classifiers capture the distinct decision boundaries that each of them relates to a specific source domain. During testing, distribution differences between target and source domains could be effectively measured by leveraging prediction disagreement among source classifiers. By fine-tuning source models to minimize the disagreement at test time, target domain features are well aligned to the invariant feature space. We verify AdaODM on two popular DG methods, namely ERM and CORAL, and four DG benchmarks, namely VLCS, PACS, OfficeHome, and TerraIncognita. The results show AdaODM stably improves the generalization capacity on unseen domains and achieves state-of-the-art performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” in International Conference on Learning Representations, 2020.
  2. V. N. Vapnik, “An overview of statistical learning theory,” IEEE transactions on neural networks, vol. 10, no. 5, pp. 988–999, 1999.
  3. G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 11, no. 5, pp. 1–46, 2020.
  4. G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” arXiv preprint arXiv:1702.05374, 2017.
  5. X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for multi-source domain adaptation,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1406–1415.
  6. Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in International conference on machine learning.   PMLR, 2015, pp. 1180–1189.
  7. E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7167–7176.
  8. X. Hu, G. Uzunbas, S. Chen, R. Wang, A. Shah, R. Nevatia, and S.-N. Lim, “Mixnorm: Test-time adaptation through online normalization estimation,” arXiv preprint arXiv:2110.11478, 2021.
  9. S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge, “Removing covariate shift improves robustness against common corruptions,” in Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS), 2020.
  10. J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation,” in International Conference on Machine Learning.   PMLR, 2020, pp. 6028–6039.
  11. D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time adaptation by entropy minimization,” in International Conference on Learning Representations, 2020.
  12. Y. Iwasawa and Y. Matsuo, “Test-time classifier adjustment module for model-agnostic domain generalization,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  13. P. Luo, F. Zhuang, H. Xiong, Y. Xiong, and Q. He, “Transfer learning from multiple source domains via consensus regularization,” in Proceedings of the 17th ACM conference on Information and knowledge management, 2008, pp. 103–112.
  14. M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint adaptation networks,” in International conference on machine learning.   PMLR, 2017, pp. 2208–2217.
  15. A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample test,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773, 2012.
  16. B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,” in European conference on computer vision.   Springer, 2016, pp. 443–450.
  17. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030, 2016.
  18. K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier discrepancy for unsupervised domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3723–3732.
  19. M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” Advances in neural information processing systems, vol. 31, 2018.
  20. J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation,” in International conference on machine learning.   PMLR, 2018, pp. 1989–1998.
  21. R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adaptation: Unsupervised domain adaptation without source data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9641–9650.
  22. J. N. Kundu, N. Venkat, R. V. Babu et al., “Universal source-free domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4544–4553.
  23. Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain generalization via conditional invariant adversarial networks,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 624–639.
  24. H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with adversarial feature learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5400–5409.
  25. O. Sener and V. Koltun, “Domain generalization without excess empirical risk,” in Advances in Neural Information Processing Systems.
  26. Y. Ding, L. Wang, B. Liang, S. Liang, Y. Wang, and F. Chen, “Domain generalization by learning and removing domain-specific features,” in Advances in Neural Information Processing Systems.
  27. D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize: Meta-learning for domain generalization,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  28. Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker, “Domain generalization via model-agnostic learning of semantic features,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  29. Y. Balaji, S. Sankaranarayanan, and R. Chellappa, “Metareg: Towards domain generalization using meta-regularization,” Advances in neural information processing systems, vol. 31, 2018.
  30. M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk minimization,” arXiv preprint arXiv:1907.02893, 2019.
  31. Y. Wang, H. Li, and A. C. Kot, “Heterogeneous domain generalization via domain mixup,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 3622–3626.
  32. M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang, “Adversarial domain adaptation with domain mixup,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6502–6509.
  33. S. Yan, H. Song, N. Li, L. Zou, and L. Ren, “Improve unsupervised domain adaptation with mixup training,” arXiv preprint arXiv:2001.00677, 2020.
  34. K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain generalization with mixstyle,” in International Conference on Learning Representations, 2020.
  35. S. Jeon, K. Hong, P. Lee, J. Lee, and H. Byun, “Feature stylization and domain-aware contrastive learning for domain generalization,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 22–31.
  36. Y. Wang, L. Qi, Y. Shi, and Y. Gao, “Feature-based style randomization for domain generalization,” arXiv preprint arXiv:2106.03171, 2021.
  37. Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time training with self-supervision for generalization under distribution shifts,” in International Conference on Machine Learning.   PMLR, 2020, pp. 9229–9248.
  38. S. Yang, D. Das, J. Cho, H. Park, and S. Yun, “Domain agnostic few-shot learning for speaker verification,” arXiv preprint arXiv:2206.13700, 2022.
  39. Y. Liu, P. Kothari, B. van Delft, B. Bellot-Gurlet, T. Mordan, and A. Alahi, “Ttt++: When does self-supervised test-time training fail or thrive?” Advances in Neural Information Processing Systems, vol. 34, 2021.
  40. D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on challenges in representation learning, ICML, vol. 3, no. 2, 2013, p. 896.
  41. M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness via adaptation and augmentation,” arXiv preprint arXiv:2110.09506, 2021.
  42. T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training: a regularization method for supervised and semi-supervised learning,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1979–1993, 2018.
  43. Q. Xie, Z. Dai, E. Hovy, T. Luong, and Q. Le, “Unsupervised data augmentation for consistency training,” Advances in Neural Information Processing Systems, vol. 33, pp. 6256–6268, 2020.
  44. H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization for generative adversarial networks,” in International Conference on Learning Representations, 2019.
  45. S. Sinha and A. B. Dieng, “Consistency regularization for variational auto-encoders,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  46. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” Advances in neural information processing systems, vol. 30, 2017.
  47. G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for visual domain adaptation,” arXiv preprint arXiv:1706.05208, 2017.
  48. Y. Wu, D. Inkpen, and A. El-Roby, “Dual mixup regularized learning for adversarial domain adaptation,” in European Conference on Computer Vision.   Springer, 2020, pp. 540–555.
  49. Q. Xu, R. Zhang, Y. Zhang, Y. Wang, and Q. Tian, “A fourier-based framework for domain generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 383–14 392.
  50. J. Vanschoren, “Meta-learning,” in Automated Machine Learning.   Springer, Cham, 2019, pp. 35–61.
  51. C. Fang, Y. Xu, and D. N. Rockmore, “Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias,” in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1657–1664.
  52. D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and artier domain generalization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 5542–5550.
  53. H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for unsupervised domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5018–5027.
  54. S. Beery, G. Van Horn, and P. Perona, “Recognition in terra incognita,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 456–473.
  55. S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization,” arXiv preprint arXiv:1911.08731, 2019.
  56. G. Blanchard, G. Lee, and C. Scott, “Generalizing from several related classification tasks to a new unlabeled sample,” Advances in neural information processing systems, vol. 24, 2011.
  57. H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain gap via style-agnostic networks,” arXiv preprint arXiv:1910.11645, vol. 2, no. 7, p. 8, 2019.
  58. M. Zhang, H. Marklund, N. Dhawan, A. Gupta, S. Levine, and C. Finn, “Adaptive risk minimization: Learning to adapt to domain shift,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  59. D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and A. Courville, “Out-of-distribution generalization via risk extrapolation (rex),” in International Conference on Machine Learning.   PMLR, 2021, pp. 5815–5826.
  60. Z. Huang, H. Wang, E. P. Xing, and D. Huang, “Self-challenging improves cross-domain generalization,” in European Conference on Computer Vision.   Springer, 2020, pp. 124–140.
  61. M.-H. Bui, T. Tran, A. Tran, and D. Phung, “Exploiting domain-specific features to enhance domain generalization,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  62. A. Dubey, V. Ramanathan, A. Pentland, and D. Mahajan, “Adaptive methods for real-world domain generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 340–14 349.
  63. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xin Zhang (904 papers)
  2. Ying-Cong Chen (47 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.