Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Unsupervised Domain Generalization (2107.06219v2)

Published 13 Jul 2021 in cs.CV, cs.LG, and cs.MM

Abstract: Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which are usually costly or unavailable, however. Since unlabeled data are far more accessible, we seek to explore how unsupervised learning can help deep models generalize across domains. Specifically, we study a novel generalization problem called unsupervised domain generalization (UDG), which aims to learn generalizable models with unlabeled data and analyze the effects of pre-training on DG. In UDG, models are pretrained with unlabeled data from various source domains before being trained on labeled source data and eventually tested on unseen target domains. Then we propose a method named Domain-Aware Representation LearnING (DARLING) to cope with the significant and misleading heterogeneity within unlabeled pretraining data and severe distribution shifts between source and target data. Surprisingly we observe that DARLING can not only counterbalance the scarcity of labeled data but also further strengthen the generalization ability of models when the labeled data are insufficient. As a pretraining approach, DARLING shows superior or comparable performance compared with ImageNet pretraining protocol even when the available data are unlabeled and of a vastly smaller amount compared to ImageNet, which may shed light on improving generalization with large-scale unlabeled data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xingxuan Zhang (25 papers)
  2. Linjun Zhou (10 papers)
  3. Renzhe Xu (23 papers)
  4. Peng Cui (116 papers)
  5. Zheyan Shen (16 papers)
  6. Haoxin Liu (12 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.