Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Visual anomaly detection in video by variational autoencoder (2203.03872v1)

Published 8 Mar 2022 in cs.CV and cs.AI

Abstract: Video anomalies detection is the intersection of anomaly detection and visual intelligence. It has commercial applications in surveillance, security, self-driving cars and crop monitoring. Videos can capture a variety of anomalies. Due to efforts needed to label training data, unsupervised approaches to train anomaly detection models for videos is more practical An autoencoder is a neural network that is trained to recreate its input using latent representation of input also called a bottleneck layer. Variational autoencoder uses distribution (mean and variance) as compared to latent vector as bottleneck layer and can have better regularization effect. In this paper we have demonstrated comparison between performance of convolutional LSTM versus a variation convolutional LSTM autoencoder

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.