Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding The Robustness of Self-supervised Learning Through Topic Modeling (2203.03539v2)

Published 2 Feb 2022 in cs.CL, cs.LG, and stat.ML

Abstract: Self-supervised learning has significantly improved the performance of many NLP tasks. However, how can self-supervised learning discover useful representations, and why is it better than traditional approaches such as probabilistic models are still largely unknown. In this paper, we focus on the context of topic modeling and highlight a key advantage of self-supervised learning - when applied to data generated by topic models, self-supervised learning can be oblivious to the specific model, and hence is less susceptible to model misspecification. In particular, we prove that commonly used self-supervised objectives based on reconstruction or contrastive samples can both recover useful posterior information for general topic models. Empirically, we show that the same objectives can perform on par with posterior inference using the correct model, while outperforming posterior inference using misspecified models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.