Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ILDAE: Instance-Level Difficulty Analysis of Evaluation Data (2203.03073v2)

Published 7 Mar 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Knowledge of questions' difficulty level helps a teacher in several ways, such as estimating students' potential quickly by asking carefully selected questions and improving quality of examination by modifying trivial and hard questions. Can we extract such benefits of instance difficulty in NLP? To this end, we conduct Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in a large-scale setup of 23 datasets and demonstrate its five novel applications: 1) conducting efficient-yet-accurate evaluations with fewer instances saving computational cost and time, 2) improving quality of existing evaluation datasets by repairing erroneous and trivial instances, 3) selecting the best model based on application requirements, 4) analyzing dataset characteristics for guiding future data creation, 5) estimating Out-of-Domain performance reliably. Comprehensive experiments for these applications result in several interesting findings, such as evaluation using just 5% instances (selected via ILDAE) achieves as high as 0.93 Kendall correlation with evaluation using complete dataset and computing weighted accuracy using difficulty scores leads to 5.2% higher correlation with Out-of-Domain performance. We release the difficulty scores and hope our analyses and findings will bring more attention to this important yet understudied field of leveraging instance difficulty in evaluations.

Citations (17)

Summary

We haven't generated a summary for this paper yet.