Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction (1905.07791v1)

Published 19 May 2019 in cs.CL

Abstract: Modern NLP systems require high-quality annotated data. In specialized domains, expert annotations may be prohibitively expensive. An alternative is to rely on crowdsourcing to reduce costs at the risk of introducing noise. In this paper we demonstrate that directly modeling instance difficulty can be used to improve model performance, and to route instances to appropriate annotators. Our difficulty prediction model combines two learned representations: a `universal' encoder trained on out-of-domain data, and a task-specific encoder. Experiments on a complex biomedical information extraction task using expert and lay annotators show that: (i) simply excluding from the training data instances predicted to be difficult yields a small boost in performance; (ii) using difficulty scores to weight instances during training provides further, consistent gains; (iii) assigning instances predicted to be difficult to domain experts is an effective strategy for task routing. Our experiments confirm the expectation that for specialized tasks expert annotations are higher quality than crowd labels, and hence preferable to obtain if practical. Moreover, augmenting small amounts of expert data with a larger set of lay annotations leads to further improvements in model performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com