Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Estimation of Covariance Matrices: Adversarial Contamination and Beyond (2203.02880v1)

Published 6 Mar 2022 in math.ST and stat.TH

Abstract: We consider the problem of estimating the covariance structure of a random vector $Y\in \mathbb Rd$ from a sample $Y_1,\ldots,Y_n$. We are interested in the situation when $d$ is large compared to $n$ but the covariance matrix $\Sigma$ of interest has (exactly or approximately) low rank. We assume that the given sample is (a) $\epsilon$-adversarially corrupted, meaning that $\epsilon$ fraction of the observations could have been replaced by arbitrary vectors, or that (b) the sample is i.i.d. but the underlying distribution is heavy-tailed, meaning that the norm of $Y$ possesses only finite fourth moments. We propose an estimator that is adaptive to the potential low-rank structure of the covariance matrix as well as to the proportion of contaminated data, and admits tight deviation guarantees despite rather weak assumptions on the underlying distribution. Finally, we discuss the algorithms that allow to approximate the proposed estimator in a numerically efficient way.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube