Torus bundles over lens spaces (2203.02566v2)
Abstract: Let $p$ be an odd prime and let $\rho:\mathbb{Z}/p\rightarrow\operatorname{GL}n(\mathbb{Z})$ be an action of $\mathbb{Z}/p$ on a lattice and let $\Gamma:=\mathbb{Z}n\rtimes{\rho}\mathbb{Z}/p$ be the corresponding semidirect product. The torus bundle $M:=Tn_{\rho}\times_{\mathbb{Z}/p}S{\ell}$ over the lens space $S{\ell}/\mathbb{Z}/p$ has fundamental group $\Gamma$. When $\mathbb{Z}/p$ fixes only the origin of $\mathbb{Z}n$, Davis and L\"uck \cite{DavisLuckTorusBundles} compute the $L$-groups $L{\langle j\rangle}_m(\mathbb{Z}[\Gamma])$ and the structure set $\mathcal{S}{geo,s}(M)$. In this paper, we extend these computations to all actions of $\mathbb{Z}/p$ on $\mathbb{Z}n$. In particular, we compute $L{\langle j\rangle}_m(\mathbb{Z}[\Gamma])$ and $\mathcal{S}{geo,s}(M)$ in a case where $\underline{E}\Gamma$ has a non-discrete singular set.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.