Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Active Phase for Activated Random Walks on the Lattice in all Dimensions (2203.02476v2)

Published 4 Mar 2022 in math.PR

Abstract: We show that the critical density of the Activated Random Walk model on $\mathbb{Z}d$ is strictly less than one when the sleep rate $\lambda$ is small enough, and tends to $0$ when $\lambda\to 0$, in any dimension $d\geqslant 1$. As far as we know, the result is new for $d=2$. We prove this by showing that, for high enough density and small enough sleep rate, the stabilization time of the model on the $d$-dimensional torus is exponentially large. To do so, we fix the the set of sites where the particles eventually fall asleep, which reduces the problem to a simpler model with density one. Taking advantage of the Abelian property of the model, we show that the stabilization time stochastically dominates the escape time of a one-dimensional random walk with a negative drift. We then check that this slow phase for the finite volume dynamics implies the existence of an active phase on the infinite lattice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.