Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Differentiable Control Barrier Functions for Vision-based End-to-End Autonomous Driving (2203.02401v1)

Published 4 Mar 2022 in cs.RO, cs.CV, and cs.LG

Abstract: Guaranteeing safety of perception-based learning systems is challenging due to the absence of ground-truth state information unlike in state-aware control scenarios. In this paper, we introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving. To this end, we design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent. Our models are composed of conventional neural network architectures and dCBFs. They are interpretable at scale, achieve great test performance under limited training data, and are safety guaranteed in a series of autonomous driving scenarios such as lane keeping and obstacle avoidance. We evaluated our framework in a sim-to-real environment, and tested on a real autonomous car, achieving safe lane following and obstacle avoidance via Augmented Reality (AR) and real parked vehicles.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.