Papers
Topics
Authors
Recent
2000 character limit reached

Data Augmentation Empowered Neural Precoding for Multiuser MIMO with MMSE Model

Published 4 Mar 2022 in cs.IT, eess.SP, and math.IT | (2203.02196v1)

Abstract: Precoding design exploiting deep learning methods has been widely studied for multiuser multiple-input multiple-output (MU-MIMO) systems. However, conventional neural precoding design applies black-box-based neural networks which are less interpretable. In this paper, we propose a deep learning-based precoding method based on an interpretable design of a neural precoding network, namely iPNet. In particular, the iPNet mimics the classic minimum mean-squared error (MMSE) precoding and approximates the matrix inversion in the design of the neural network architecture. Specifically, the proposed iPNet consists of a model-driven component network, responsible for augmenting the input channel state information (CSI), and a data-driven sub-network, responsible for precoding calculation from this augmented CSI. The latter data-driven module is explicitly interpreted as an unsupervised learner of the MMSE precoder. Simulation results show that by exploiting the augmented CSI, the proposed iPNet achieves noticeable performance gain over existing black-box designs and also exhibits enhanced generalizability against CSI mismatches.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.