Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Backdoors with Global Average Pooling (2203.02079v1)

Published 4 Mar 2022 in cs.CR and cs.LG

Abstract: Outsourced training and machine learning as a service have resulted in novel attack vectors like backdoor attacks. Such attacks embed a secret functionality in a neural network activated when the trigger is added to its input. In most works in the literature, the trigger is static, both in terms of location and pattern. The effectiveness of various detection mechanisms depends on this property. It was recently shown that countermeasures in image classification, like Neural Cleanse and ABS, could be bypassed with dynamic triggers that are effective regardless of their pattern and location. Still, such backdoors are demanding as they require a large percentage of poisoned training data. In this work, we are the first to show that dynamic backdoor attacks could happen due to a global average pooling layer without increasing the percentage of the poisoned training data. Nevertheless, our experiments in sound classification, text sentiment analysis, and image classification show this to be very difficult in practice.

Citations (7)

Summary

We haven't generated a summary for this paper yet.