Papers
Topics
Authors
Recent
Search
2000 character limit reached

Kernel Density Estimation by Genetic Algorithm

Published 3 Mar 2022 in stat.ME, cs.NE, stat.CO, and stat.ML | (2203.01535v1)

Abstract: This study proposes a data condensation method for multivariate kernel density estimation by genetic algorithm. First, our proposed algorithm generates multiple subsamples of a given size with replacement from the original sample. The subsamples and their constituting data points are regarded as $\it{chromosome}$ and $\it{gene}$, respectively, in the terminology of genetic algorithm. Second, each pair of subsamples breeds two new subsamples, where each data point faces either $\it{crossover}$, $\it{mutation}$, or $\it{reproduction}$ with a certain probability. The dominant subsamples in terms of fitness values are inherited by the next generation. This process is repeated generation by generation and brings the sparse representation of kernel density estimator in its completion. We confirmed from simulation studies that the resulting estimator can perform better than other well-known density estimators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.