Papers
Topics
Authors
Recent
Search
2000 character limit reached

UAV-Aided Decentralized Learning over Mesh Networks

Published 2 Mar 2022 in cs.IT, cs.LG, eess.SP, and math.IT | (2203.01008v2)

Abstract: Decentralized learning empowers wireless network devices to collaboratively train a ML model relying solely on device-to-device (D2D) communication. It is known that the convergence speed of decentralized optimization algorithms severely depends on the degree of the network connectivity, with denser network topologies leading to shorter convergence time. Consequently, the local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols, rendering them potentially impracticable. In this work we investigate the role of an unmanned aerial vehicle (UAV), used as flying relay, in facilitating decentralized learning procedures in such challenging conditions. We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users. We then provide a series of experiments highlighting the essential role of UAVs in the context of decentralized learning over mesh networks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.