Papers
Topics
Authors
Recent
2000 character limit reached

Follow your Nose: Using General Value Functions for Directed Exploration in Reinforcement Learning

Published 2 Mar 2022 in cs.LG and cs.AI | (2203.00874v2)

Abstract: Improving sample efficiency is a key challenge in reinforcement learning, especially in environments with large state spaces and sparse rewards. In literature, this is resolved either through the use of auxiliary tasks (subgoals) or through clever exploration strategies. Exploration methods have been used to sample better trajectories in large environments while auxiliary tasks have been incorporated where the reward is sparse. However, few studies have attempted to tackle both large scale and reward sparsity at the same time. This paper explores the idea of combining exploration with auxiliary task learning using General Value Functions (GVFs) and a directed exploration strategy. We present a way to learn value functions which can be used to sample actions and provide directed exploration. Experiments on navigation tasks with varying grid sizes demonstrate the performance advantages over several competitive baselines.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.