Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the relation of the spectral test to isotropic discrepancy and $L_q$-approximation in Sobolev spaces (2010.04522v1)

Published 9 Oct 2020 in math.NA, cs.NA, and math.NT

Abstract: This paper is a follow-up to the paper "A note on isotropic discrepancy and spectral test of lattice point sets" [J. Complexity, 58:101441, 2020]. We show that the isotropic discrepancy of a lattice point set is at most $d \, 2{2(d+1)}$ times its spectral test, thereby correcting the dependence on the dimension $d$ and an inaccuracy in the proof of the upper bound in Theorem 2 of the mentioned paper. The major task is to bound the volume of the neighbourhood of the boundary of a convex set contained in the unit cube. Further, we characterize averages of the distance to a lattice point set in terms of the spectral test. As an application, we infer that the spectral test -- and with it the isotropic discrepancy -- is crucial for the suitability of the lattice point set for the approximation of Sobolev functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.