Tail Behavior of Sphere-Decoding Complexity in Random Lattices
Abstract: We analyze the (computational) complexity distribution of sphere-decoding (SD) for random infinite lattices. In particular, we show that under fairly general assumptions on the statistics of the lattice basis matrix, the tail behavior of the SD complexity distribution is solely determined by the inverse volume of a fundamental region of the underlying lattice. Particularizing this result to NxM, N>=M, i.i.d. Gaussian lattice basis matrices, we find that the corresponding complexity distribution is of Pareto-type with tail exponent given by N-M+1. We furthermore show that this tail exponent is not improved by lattice-reduction, which includes layer-sorting as a special case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.