Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability analysis of RBF-FD and WLS based local strong form meshless methods on scattered nodes

Published 28 Feb 2022 in math.NA and cs.NA | (2202.13873v2)

Abstract: The popularity of local meshless methods in the field of numerical simulations has increased greatly in recent years. This is mainly due to the fact that they can operate on scattered nodes and that they allow a direct control over the approximation order and basis functions. In this paper we analyse two popular variants of local strong form meshless methods, namely the radial basis function-generated finite differences (RBF-FD) using polyharmonic splines (PHS) augmented with monomials, and the weighted least squares (WLS) approach using only monomials. Our analysis focuses on the accuracy and stability of the numerical solution computed on scattered nodes in a two- and three-dimensional domain. We show that while the WLS variant is a better choice when lower order approximations are sufficient, the RBF-FD variant exhibits a more stable behavior and a higher accuracy of the numerical solution for higher order approximations, but at the cost of higher computational complexity.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.