Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graded Lie-Rinehart algebras (2202.12982v1)

Published 25 Feb 2022 in math.RA and math.RT

Abstract: We introduce the class of graded Lie-Rinehart algebras as a natural generalization of the one of graded Lie algebras. For $G$ an abelian group, we show that if $L$ is a tight $G$-graded Lie-Rinehart algebra over an associative and commutative $G$-graded algebra $A$ then $L$ and $A$ decompose as the orthogonal direct sums $L = \bigoplus_{i \in I}I_i$ and $A = \bigoplus_{j \in J}A_j$, where any $I_i$ is a non-zero ideal of $L$, any $A_j$ is a non-zero ideal of $A$, and both decompositions satisfy that for any $i \in I$ there exists a unique $j \in J$ such that $A_jI_i \neq 0$. Furthermore, any $I_i$ is a graded Lie-Rinehart algebra over $A_j$. Also, under mild conditions, it is shown that the above decompositions of $L$ and $A$ are by means of the family of their, respective, gr-simple ideals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube