Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Attribution of Face-swap Deepfake Videos (2202.12951v1)

Published 25 Feb 2022 in cs.CV and cs.MM

Abstract: AI-created face-swap videos, commonly known as Deepfakes, have attracted wide attention as powerful impersonation attacks. Existing research on Deepfakes mostly focuses on binary detection to distinguish between real and fake videos. However, it is also important to determine the specific generation model for a fake video, which can help attribute it to the source for forensic investigation. In this paper, we fill this gap by studying the model attribution problem of Deepfake videos. We first introduce a new dataset with DeepFakes from Different Models (DFDM) based on several Autoencoder models. Specifically, five generation models with variations in encoder, decoder, intermediate layer, input resolution, and compression ratio have been used to generate a total of 6,450 Deepfake videos based on the same input. Then we take Deepfakes model attribution as a multiclass classification task and propose a spatial and temporal attention based method to explore the differences among Deepfakes in the new dataset. Experimental evaluation shows that most existing Deepfakes detection methods failed in Deepfakes model attribution, while the proposed method achieved over 70% accuracy on the high-quality DFDM dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shan Jia (26 papers)
  2. Xin Li (980 papers)
  3. Siwei Lyu (125 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.