Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven distributed MPC of dynamically coupled linear systems (2202.12764v2)

Published 25 Feb 2022 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we present a data-driven distributed model predictive control (MPC) scheme to stabilise the origin of dynamically coupled discrete-time linear systems subject to decoupled input constraints. The local optimisation problems solved by the subsystems rely on a distributed adaptation of the Fundamental Lemma by Willems et al., allowing to parametrise system trajectories using only measured input-output data without explicit model knowledge. For the local predictions, the subsystems rely on communicated assumed trajectories of neighbours. Each subsystem guarantees a small deviation from these trajectories via a consistency constraint. We provide a theoretical analysis of the resulting non-iterative distributed MPC scheme, including proofs of recursive feasibility and (practical) stability. Finally, the approach is successfully applied to a numerical example.

Citations (5)

Summary

We haven't generated a summary for this paper yet.