Papers
Topics
Authors
Recent
2000 character limit reached

Towards neoRL networks; the emergence of purposive graphs

Published 25 Feb 2022 in cs.AI | (2202.12622v1)

Abstract: The neoRL framework for purposive AI implements latent learning by emulated cognitive maps, with general value functions (GVF) expressing operant desires toward separate states. The agent's expectancy of reward, expressed as learned projections in the considered space, allows the neoRL agent to extract purposive behavior from the learned map according to the reward hypothesis. We explore this allegory further, considering neoRL modules as nodes in a network with desire as input and state-action Q-value as output; we see that action sets with Euclidean significance imply an interpretation of state-action vectors as Euclidean projections of desire. Autonomous desire from neoRL nodes within the agent allows for deeper neoRL behavioral graphs. Experiments confirm the effect of neoRL networks governed by autonomous desire, verifying the four principles for purposive networks. A neoRL agent governed by purposive networks can navigate Euclidean spaces in real-time while learning, exemplifying how modern AI still can profit from inspiration from early psychology.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.