Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consolidated Adaptive T-soft Update for Deep Reinforcement Learning (2202.12504v1)

Published 25 Feb 2022 in cs.LG and cs.RO

Abstract: Demand for deep reinforcement learning (DRL) is gradually increased to enable robots to perform complex tasks, while DRL is known to be unstable. As a technique to stabilize its learning, a target network that slowly and asymptotically matches a main network is widely employed to generate stable pseudo-supervised signals. Recently, T-soft update has been proposed as a noise-robust update rule for the target network and has contributed to improving the DRL performance. However, the noise robustness of T-soft update is specified by a hyperparameter, which should be tuned for each task, and is deteriorated by a simplified implementation. This study develops adaptive T-soft (AT-soft) update by utilizing the update rule in AdaTerm, which has been developed recently. In addition, the concern that the target network does not asymptotically match the main network is mitigated by a new consolidation for bringing the main network back to the target network. This so-called consolidated AT-soft (CAT-soft) update is verified through numerical simulations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.