Papers
Topics
Authors
Recent
2000 character limit reached

A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies

Published 24 Feb 2022 in stat.ME and stat.AP | (2202.12420v2)

Abstract: The Hazard Ratio (HR) is often reported as the main causal effect when studying survival data. Despite its popularity, the HR suffers from an unclear causal interpretation. As already pointed out in the literature, there is a built-in selection bias in the HR, because similarly to the truncation by death problem, the HR conditions on post-treatment survival. A recently proposed alternative, inspired by the Survivor Average Causal Effect (SACE), is the causal HR, defined as the ratio between hazards across treatment groups among the study participants that would have survived regardless of their treatment assignment. We discuss the challenge in identifying the causal HR and present a sensitivity analysis identification approach in randomized controlled trials utilizing a working frailty model. We further extend our framework to adjust for potential confounders using inverse probability of treatment weighting. We present a Cox-based and a flexible non-parametric kernel-based estimation under right censoring. We study the finite-sample properties of the proposed estimation method through simulations. We illustrate the utility of our framework using two real-data examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.