Papers
Topics
Authors
Recent
2000 character limit reached

Fourier-Based Augmentations for Improved Robustness and Uncertainty Calibration

Published 24 Feb 2022 in cs.CV and cs.LG | (2202.12412v1)

Abstract: Diverse data augmentation strategies are a natural approach to improving robustness in computer vision models against unforeseen shifts in data distribution. However, the ability to tailor such strategies to inoculate a model against specific classes of corruptions or attacks -- without incurring substantial losses in robustness against other classes of corruptions -- remains elusive. In this work, we successfully harden a model against Fourier-based attacks, while producing superior-to-AugMix accuracy and calibration results on both the CIFAR-10-C and CIFAR-100-C datasets; classification error is reduced by over ten percentage points for some high-severity noise and digital-type corruptions. We achieve this by incorporating Fourier-basis perturbations in the AugMix image-augmentation framework. Thus we demonstrate that the AugMix framework can be tailored to effectively target particular distribution shifts, while boosting overall model robustness.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.