Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially-Private Publication of Origin-Destination Matrices with Intermediate Stops (2202.12342v1)

Published 24 Feb 2022 in cs.DB

Abstract: Conventional origin-destination (OD) matrices record the count of trips between pairs of start and end locations, and have been extensively used in transportation, traffic planning, etc. More recently, due to use case scenarios such as COVID-19 pandemic spread modeling, it is increasingly important to also record intermediate points along an individual's path, rather than only the trip start and end points. This can be achieved by using a multi-dimensional frequency matrix over a data space partitioning at the desired level of granularity. However, serious privacy constraints occur when releasing OD matrix data, and especially when adding multiple intermediate points, which makes individual trajectories more distinguishable to an attacker. To address this threat, we propose a technique for privacy-preserving publication of multi-dimensional OD matrices that achieves differential privacy (DP), the de-facto standard in private data release. We propose a family of approaches that factor in important data properties such as data density and homogeneity in order to build OD matrices that provide provable protection guarantees while preserving query accuracy. Extensive experiments on real and synthetic datasets show that the proposed approaches clearly outperform existing state-of-the-art.

Citations (4)

Summary

We haven't generated a summary for this paper yet.