Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semiparametric Estimation of Dynamic Binary Choice Panel Data Models (2202.12062v4)

Published 24 Feb 2022 in econ.EM

Abstract: We propose a new approach to the semiparametric analysis of panel data binary choice models with fixed effects and dynamics (lagged dependent variables). The model we consider has the same random utility framework as in Honore and Kyriazidou (2000). We demonstrate that, with additional serial dependence conditions on the process of deterministic utility and tail restrictions on the error distribution, the (point) identification of the model can proceed in two steps, and only requires matching the value of an index function of explanatory variables over time, as opposed to that of each explanatory variable. Our identification approach motivates an easily implementable, two-step maximum score (2SMS) procedure -- producing estimators whose rates of convergence, in contrast to Honore and Kyriazidou's (2000) methods, are independent of the model dimension. We then derive the asymptotic properties of the 2SMS procedure and propose bootstrap-based distributional approximations for inference. Monte Carlo evidence indicates that our procedure performs adequately in finite samples.

Summary

We haven't generated a summary for this paper yet.