Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Recurrence relations for the generalized Laguerre and Charlier orthogonal polynomials and discrete Painlevé equations on the $D_{6}^{(1)}$ Sakai surface (2202.11263v2)

Published 23 Feb 2022 in nlin.SI

Abstract: This paper concerns the discrete version of the Painlev\'e identification problem, i.e., how to recognize a certain recurrence relation as a discrete Painlev\'e equation. Often some clues can be seen from the setting of the problem, e.g., when the recurrence is connected with some differential Painlev\'e equation, or from the geometry of the configuration of indeterminate points of the equation. The main message of our paper is that, in fact, this only allows us to identify the configuration space of the dynamic system, but not the dynamics themselves. The refined version of the identification problem lies in determining, up to the conjugation, the translation direction of the dynamics, which in turn requires the full power of the geometric theory of Painlev\'e equations. To illustrate this point, in this paper we consider two examples of such recurrences that appear in the theory of orthogonal polynomials. We choose these examples because they get regularized on the same family of Sakai surfaces, but at the same time are not equivalent, since they result in non-equivalent translation directions. In addition, we show the effectiveness of a recently proposed identification procedure for discrete Painlev\'e equations using Sakai's geometric approach for answering such questions. In particular, this approach requires no a priori knowledge of a possible type of the equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: