Papers
Topics
Authors
Recent
Search
2000 character limit reached

Universal adversarial perturbation for remote sensing images

Published 22 Feb 2022 in cs.CV | (2202.10693v2)

Abstract: Recently, with the application of deep learning in the remote sensing image (RSI) field, the classification accuracy of the RSI has been dramatically improved compared with traditional technology. However, even the state-of-the-art object recognition convolutional neural networks are fooled by the universal adversarial perturbation (UAP). The research on UAP is mostly limited to ordinary images, and RSIs have not been studied. To explore the basic characteristics of UAPs of RSIs, this paper proposes a novel method combining an encoder-decoder network with an attention mechanism to generate the UAP of RSIs. Firstly, the former is used to generate the UAP, which can learn the distribution of perturbations better, and then the latter is used to find the sensitive regions concerned by the RSI classification model. Finally, the generated regions are used to fine-tune the perturbation making the model misclassified with fewer perturbations. The experimental results show that the UAP can make the classification model misclassify, and the attack success rate of our proposed method on the RSI data set is as high as 97.09%.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.