Papers
Topics
Authors
Recent
Search
2000 character limit reached

Statistical Inference for Genetic Relatedness Based on High-Dimensional Logistic Regression

Published 21 Feb 2022 in stat.ME, math.ST, stat.AP, and stat.TH | (2202.10007v2)

Abstract: This paper studies the problem of statistical inference for genetic relatedness between binary traits based on individual-level genome-wide association data. Specifically, under the high-dimensional logistic regression models, we define parameters characterizing the cross-trait genetic correlation, the genetic covariance and the trait-specific genetic variance. A novel weighted debiasing method is developed for the logistic Lasso estimator and computationally efficient debiased estimators are proposed. The rates of convergence for these estimators are studied and their asymptotic normality is established under mild conditions. Moreover, we construct confidence intervals and statistical tests for these parameters, and provide theoretical justifications for the methods, including the coverage probability and expected length of the confidence intervals, as well as the size and power of the proposed tests. Numerical studies are conducted under both model generated data and simulated genetic data to show the superiority of the proposed methods. By analyzing a real data set on autoimmune diseases, we demonstrate its ability to obtain novel insights about the shared genetic architecture between ten pediatric autoimmune diseases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.