2000 character limit reached
A bound on the dissociation number (2202.09190v1)
Published 18 Feb 2022 in math.CO
Abstract: The dissociation number ${\rm diss}(G)$ of a graph $G$ is the maximum order of a set of vertices of $G$ inducing a subgraph that is of maximum degree at most $1$. Computing the dissociation number of a given graph is algorithmically hard even when restricted to subcubic bipartite graphs. For a graph $G$ with $n$ vertices, $m$ edges, $k$ components, and $c_1$ induced cycles of length $1$ modulo $3$, we show ${\rm diss}(G)\geq n-\frac{1}{3}\Big(m+k+c_1\Big)$. Furthermore, we characterize the extremal graphs in which every two cycles are vertex-disjoint.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.