Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantisation-aware Precoding for MU-MIMO with Limited-capacity Fronthaul (2202.08925v1)

Published 17 Feb 2022 in eess.SP, cs.IT, and math.IT

Abstract: Base stations in 5G and beyond use advanced antenna systems (AASs), where multiple passive antenna elements and radio units are integrated into a single box. A critical bottleneck of such a system is the digital fronthaul between the AAS and baseband unit (BBU), which has limited capacity. In this paper, we study an AAS used for precoded downlink transmission over a multi-user multiple-input multiple-output (MU-MIMO) channel. First, we present the baseline quantization-unaware precoding scheme created when a precoder is computed at the BBU and then quantized to be sent over the fronthaul. We propose a new precoding design that is aware of the fronthaul quantization. We formulate an optimization problem to minimize the mean squared error at the receiver side. We rewrite the problem to utilize mixed-integer programming to solve it. The numerical results manifest that our proposed precoding greatly outperforms quantization-unaware precoding in terms of sum rate.

Citations (5)

Summary

We haven't generated a summary for this paper yet.