Papers
Topics
Authors
Recent
2000 character limit reached

Symmetry of terminating series representations of the Askey-Wilson polynomials

Published 17 Feb 2022 in math.CA | (2202.08911v1)

Abstract: In this paper, we explore the symmetric nature of the terminating basic hypergeometric series representations of the Askey--Wilson polynomials and the corresponding terminating basic hypergeometric transformations that these polynomials satisfy. In particular we identify and classify the set of 4 and 7 equivalence classes of terminating balanced ${}_4\phi_3$ and terminating very-well poised ${}_8W_7$ basic hypergeometric series which are connected with the Askey--Wilson polynomials. We study the inversion properties of these equivalence classes and also identify the connection of both sets of equivalence classes with the symmetric group $S_6$, the symmetry group of the terminating balanced ${}_4\phi_3$. We then use terminating balanced ${}_4\phi_3$ and terminating very-well poised ${}_8W_7$ transformations to give a broader interpretation of Watson's $q$-analog of Whipple's theorem and its converse. We give a broad description of the symmetry structure of the terminating basic hypergeometric series representations of the Askey--Wilson polynomials.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.