Papers
Topics
Authors
Recent
Search
2000 character limit reached

The learning phases in NN: From Fitting the Majority to Fitting a Few

Published 16 Feb 2022 in cs.LG | (2202.08299v1)

Abstract: The learning dynamics of deep neural networks are subject to controversy. Using the information bottleneck (IB) theory separate fitting and compression phases have been put forward but have since been heavily debated. We approach learning dynamics by analyzing a layer's reconstruction ability of the input and prediction performance based on the evolution of parameters during training. We show that a prototyping phase decreasing reconstruction loss initially, followed by reducing classification loss of a few samples, which increases reconstruction loss, exists under mild assumptions on the data. Aside from providing a mathematical analysis of single layer classification networks, we also assess the behavior using common datasets and architectures from computer vision such as ResNet and VGG.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.