Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small defects reconstruction in waveguides from multifrequency one-side scattering data (2202.08168v1)

Published 16 Feb 2022 in math.NA, cs.NA, math-ph, and math.MP

Abstract: Localization and reconstruction of small defects in acoustic or electromagnetic waveguides is of crucial interest in nondestructive evaluation of structures. The aim of this work is to present a new multi-frequency inversion method to reconstruct small defects in a 2D waveguide. Given one-side multi-frequency wave field measurements of propagating modes, we use a Born approximation to provide a L2-stable reconstruction of three types of defects: a local perturbation inside the waveguide, a bending of the waveguide, and a localized defect in the geometry of the waveguide. This method is based on a mode-by-mode spacial Fourier inversion from the available partial data in the Fourier domain. Indeed, in the available data, some high and low spatial frequency information on the defect are missing. We overcome this issue using both a compact support hypothesis and a minimal smoothness hypothesis on the defects. We also provide a suitable numerical method for efficient reconstruction of such defects and we discuss its applications and limits.

Citations (6)

Summary

We haven't generated a summary for this paper yet.