Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Measuring Excess Capacity in Neural Networks

Published 16 Feb 2022 in cs.LG and stat.ML | (2202.08070v3)

Abstract: We study the excess capacity of deep networks in the context of supervised classification. That is, given a capacity measure of the underlying hypothesis class - in our case, empirical Rademacher complexity - to what extent can we (a priori) constrain this class while retaining an empirical error on a par with the unconstrained regime? To assess excess capacity in modern architectures (such as residual networks), we extend and unify prior Rademacher complexity bounds to accommodate function composition and addition, as well as the structure of convolutions. The capacity-driving terms in our bounds are the Lipschitz constants of the layers and an (2, 1) group norm distance to the initializations of the convolution weights. Experiments on benchmark datasets of varying task difficulty indicate that (1) there is a substantial amount of excess capacity per task, and (2) capacity can be kept at a surprisingly similar level across tasks. Overall, this suggests a notion of compressibility with respect to weight norms, complementary to classic compression via weight pruning. Source code is available at https://github.com/rkwitt/excess_capacity.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.