Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse Markov Models for High-dimensional Inference

Published 16 Feb 2022 in math.ST and stat.TH | (2202.08007v3)

Abstract: Finite order Markov models are theoretically well-studied models for dependent discrete data. Despite their generality, application in empirical work when the order is large is rare. Practitioners avoid using higher order Markov models because (1) the number of parameters grow exponentially with the order and (2) the interpretation is often difficult. Mixture of transition distribution models (MTD) were introduced to overcome both limitations. MTD represent higher order Markov models as a convex mixture of single step Markov chains, reducing the number of parameters and increasing the interpretability. Nevertheless, in practice, estimation of MTD models with large orders are still limited because of curse of dimensionality and high algorithm complexity. Here, we prove that if only few lags are relevant we can consistently and efficiently recover the lags and estimate the transition probabilities of high-dimensional MTD models. The key innovation is a recursive procedure for the selection of the relevant lags of the model. Our results are based on (1) a new structural result of the MTD and (2) an improved martingale concentration inequality. We illustrate our method using simulations and a weather data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.