Willems' fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC
Abstract: In this paper we investigate data-driven predictive control of discrete-time linear descriptor systems. Specifically, we give a tailored variant of Willems' fundamental lemma, which shows that for descriptor systems the non-parametric modelling via a Hankel matrix requires less data compared to linear time-invariant systems without algebraic constraints. Moreover, we use this description to propose a data-driven framework for optimal control and predictive control of discrete-time linear descriptor systems. For the latter, we provide a sufficient stability condition for receding-horizon control before we illustrate our findings with an example.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.