Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProsoSpeech: Enhancing Prosody With Quantized Vector Pre-training in Text-to-Speech (2202.07816v1)

Published 16 Feb 2022 in eess.AS, cs.CL, and cs.SD

Abstract: Expressive text-to-speech (TTS) has become a hot research topic recently, mainly focusing on modeling prosody in speech. Prosody modeling has several challenges: 1) the extracted pitch used in previous prosody modeling works have inevitable errors, which hurts the prosody modeling; 2) different attributes of prosody (e.g., pitch, duration and energy) are dependent on each other and produce the natural prosody together; and 3) due to high variability of prosody and the limited amount of high-quality data for TTS training, the distribution of prosody cannot be fully shaped. To tackle these issues, we propose ProsoSpeech, which enhances the prosody using quantized latent vectors pre-trained on large-scale unpaired and low-quality text and speech data. Specifically, we first introduce a word-level prosody encoder, which quantizes the low-frequency band of the speech and compresses prosody attributes in the latent prosody vector (LPV). Then we introduce an LPV predictor, which predicts LPV given word sequence. We pre-train the LPV predictor on large-scale text and low-quality speech data and fine-tune it on the high-quality TTS dataset. Finally, our model can generate expressive speech conditioned on the predicted LPV. Experimental results show that ProsoSpeech can generate speech with richer prosody compared with baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yi Ren (215 papers)
  2. Ming Lei (52 papers)
  3. Zhiying Huang (6 papers)
  4. Shiliang Zhang (132 papers)
  5. Qian Chen (264 papers)
  6. Zhijie Yan (33 papers)
  7. Zhou Zhao (218 papers)
Citations (38)