Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Classification for High Dimensional Data using Supervised Non-Parametric Ensemble Method (2202.07779v2)

Published 15 Feb 2022 in cs.LG

Abstract: High dimensional data for classification does create many difficulties for machine learning algorithms. The generalization can be done using ensemble learning methods such as bagging based supervised non-parametric random forest algorithm. In this paper we solve the problem of binary classification for high dimensional data using random forest for polycystic ovary syndrome dataset. We have performed the implementation and provided a detailed visualization of the data for general inference. The training accuracy that we have achieved is 95.6% and validation accuracy over 91.74% respectively.

Citations (10)

Summary

We haven't generated a summary for this paper yet.