Papers
Topics
Authors
Recent
2000 character limit reached

StratDef: Strategic Defense Against Adversarial Attacks in ML-based Malware Detection

Published 15 Feb 2022 in cs.LG and cs.CR | (2202.07568v6)

Abstract: Over the years, most research towards defenses against adversarial attacks on machine learning models has been in the image recognition domain. The ML-based malware detection domain has received less attention despite its importance. Moreover, most work exploring these defenses has focused on several methods but with no strategy when applying them. In this paper, we introduce StratDef, which is a strategic defense system based on a moving target defense approach. We overcome challenges related to the systematic construction, selection, and strategic use of models to maximize adversarial robustness. StratDef dynamically and strategically chooses the best models to increase the uncertainty for the attacker while minimizing critical aspects in the adversarial ML domain, like attack transferability. We provide the first comprehensive evaluation of defenses against adversarial attacks on machine learning for malware detection, where our threat model explores different levels of threat, attacker knowledge, capabilities, and attack intensities. We show that StratDef performs better than other defenses even when facing the peak adversarial threat. We also show that, of the existing defenses, only a few adversarially-trained models provide substantially better protection than just using vanilla models but are still outperformed by StratDef.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.