Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis (2202.07423v1)

Published 12 Feb 2022 in stat.ML and cs.LG

Abstract: Survival analysis (SA) is an active field of research that is concerned with time-to-event outcomes and is prevalent in many domains, particularly biomedical applications. Despite its importance, SA remains challenging due to small-scale data sets and complex outcome distributions, concealed by truncation and censoring processes. The piecewise exponential additive mixed model (PAMM) is a model class addressing many of these challenges, yet PAMMs are not applicable in high-dimensional feature settings or in the case of unstructured or multimodal data. We unify existing approaches by proposing DeepPAMM, a versatile deep learning framework that is well-founded from a statistical point of view, yet with enough flexibility for modeling complex hazard structures. We illustrate that DeepPAMM is competitive with other machine learning approaches with respect to predictive performance while maintaining interpretability through benchmark experiments and an extended case study.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.