Papers
Topics
Authors
Recent
Search
2000 character limit reached

REPID: Regional Effect Plots with implicit Interaction Detection

Published 15 Feb 2022 in stat.ML and cs.LG | (2202.07254v1)

Abstract: Machine learning models can automatically learn complex relationships, such as non-linear and interaction effects. Interpretable machine learning methods such as partial dependence plots visualize marginal feature effects but may lead to misleading interpretations when feature interactions are present. Hence, employing additional methods that can detect and measure the strength of interactions is paramount to better understand the inner workings of machine learning models. We demonstrate several drawbacks of existing global interaction detection approaches, characterize them theoretically, and evaluate them empirically. Furthermore, we introduce regional effect plots with implicit interaction detection, a novel framework to detect interactions between a feature of interest and other features. The framework also quantifies the strength of interactions and provides interpretable and distinct regions in which feature effects can be interpreted more reliably, as they are less confounded by interactions. We prove the theoretical eligibility of our method and show its applicability on various simulation and real-world examples.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.