Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unsupervised word-level prosody tagging for controllable speech synthesis

Published 15 Feb 2022 in eess.AS, cs.AI, cs.LG, and cs.SD | (2202.07200v2)

Abstract: Although word-level prosody modeling in neural text-to-speech (TTS) has been investigated in recent research for diverse speech synthesis, it is still challenging to control speech synthesis manually without a specific reference. This is largely due to lack of word-level prosody tags. In this work, we propose a novel approach for unsupervised word-level prosody tagging with two stages, where we first group the words into different types with a decision tree according to their phonetic content and then cluster the prosodies using GMM within each type of words separately. This design is based on the assumption that the prosodies of different type of words, such as long or short words, should be tagged with different label sets. Furthermore, a TTS system with the derived word-level prosody tags is trained for controllable speech synthesis. Experiments on LJSpeech show that the TTS model trained with word-level prosody tags not only achieves better naturalness than a typical FastSpeech2 model, but also gains the ability to manipulate word-level prosody.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.