Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness Amidst Non-IID Graph Data: Current Achievements and Future Directions (2202.07170v3)

Published 15 Feb 2022 in cs.LG and cs.AI

Abstract: The importance of understanding and correcting algorithmic bias in ML has led to an increase in research on fairness in ML, which typically assumes that the underlying data is independent and identically distributed (IID). However, in reality, data is often represented using non-IID graph structures that capture connections among individual units. To address bias in ML systems, it is crucial to bridge the gap between the traditional fairness literature designed for IID data and the ubiquity of non-IID graph data. In this survey, we review such recent advance in fairness amidst non-IID graph data and identify datasets and evaluation metrics available for future research. We also point out the limitations of existing work as well as promising future directions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.